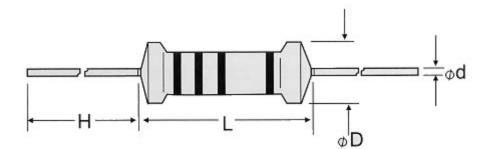
Carbon Film Resistors

CR Series

1/8W , 1/6W , 1/4W , 1/2W , 1W , 2W , 3W


INTRODUCTION

Featuring consistency and stably-controlled, these carbon film resistors with reasonable prices are widely & largely used in the electronic, electrical and information industries. This resistor is a ceramic bar tightly coated with a carbon film which is composed of carbon separated from organic compound through the treatment of high-temperature vacuum. After the carbon-coated bar is connected with proper joint and engraved with grooves, its surface is finished with epoxy resin so that the bar is enclosed with a protective film.

FEATURES

- Industry's lower cost and deliver form stock.
- Exceptional long-term stability.
- Exceeds carbon comp MIL-R-11 performance.
- Standard tolerance : 2%, 5%
- Variety of packing-bulk, strip pack, 26mm and 52mm tape and reel, cut and formed or radial Pana. / Avis..

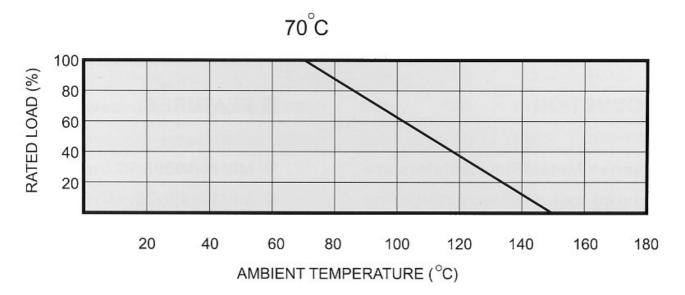
DIMENSIONS

STYLE		DIMENSI	ON (mm)	POWER RATING	VALUE	
STILE	L	Φ D	H	Φ d	(Watt)	RANGE
CR-12	3.3±0.4	1.8±0.3	28±2	0.5±0.05	1/6W ; 1/8W	1Ω~10M
CR-25	6.3±0.5	2.3±0.3	28±2	0.55±0.05	1/4W	1Ω~10M
CR-50	9±0.5	3.2±0.5	26±2	0.6±0.05	1/2W	1Ω~10M
CR-100	11.5±1.0	4.5±0.5	35±2	0.8±0.05	1W	1Ω~10M
CR-200	15.5±1.0	5.0±0.5	32±2	0.8±0.05	2W	1Ω~10M
CR-300	17.5±1.0	6.5±0.5	35±2	0.8±0.05	3W	1Ω~10M

Carbon Film CR Series

ELECTRICAL CHARACTERISTICS

Style		CR-	12	CR-25	CR-5) (CR-100	CR-20	0 CF	R-300		
Power Rating 70°C		1/6;1/	8W	1/4W	1/2W		1W	2W		3W		
Operating Temp. Range			-55°C~+155°C									
Max. Working	lax. Working Voltage		200V		250V	350V		500V	500V	6	600V	
Max. Overload Voltage		400V		500V	700V		1000V	1000V	10	1000V		
Dielectric Withstanding Voltage(AC)		300V		500V	700V		1500V	1500V	15	500V		
Max. Intermittence Overload Voltage			500V		750V	1000V		1500V	2000V	20	000V	
	CR-12 / CR-25 / CR-50 CR-100 / CR-20					-200 / CF	R-300					
T.C.R.	100KΩ以下	100KΩ-	-1MΩ 1Ι		MΩ以上	100K (00KΩ以下		100ΚΩ~1ΜΩ		1MΩ以上	
(PPM)	+350/-500	+350/-	700	700 +350/-1000 +350PPM +35		0/-500 +35		/-1000				


ENVIRONMENTAL CHARACTERISTICS

PERFORMANCE TEST	TEST METHOD	APPRAISE
Short Time Overload	JIS-C-5202 5.5: 2.5 times RCWV for 5 seconds	±(0.75%+0.05Ω)
Dielectric Withstanding V.	JIS-C-5202 5.7: in V-Block for 60 seconds	Ву Туре
Temperature Coefficient	JIS-C-5202 5.2 : -55°C ~ + 155°C	Ву Туре
Insulation Resistance	JIS-C-5202 5.6 : in V-Block	≧1000 MΩ
Solderability	JIS-C-5202 6.5 : 235°C for 5 ± 0.5 seconds	95% min. Coverage
Resistance to Solvent	JIS-C-5202 6.9 : Trichroethance for 1 min. With ultrasonic	No deterioration
Terminal Strength	Direct load for 10 sec. In the direction of the terminal leads	≧2.5Kg/24.5N
Pulse Overload	JIS-C-5202 5.8 : 4 time RCWV 10000 cycles (1 sec.on,25 sec.off)	±(2%+0.05Ω)
Load Life in Humidity	JIS-C-5202 7.9 : 40±2°C, 90~95% RH at RCWV for 1000 hrs (1.5 hrs. On, 0.5 hrs. Off)	±(3%+0.05Ω)
Load Life	JIS-C-5202 7.10 : 70°C at RCWV for 1000 hrs (1.5 hrs. On, 0.5 hrs. off)	±(3%+0.05Ω)
Temperature Cycling	JIS-C-5202 7.4 : 65°C ~ room temp ~ 150°C ~ room temp. For 5 cycle	±(1%+0.05Ω)
Soldering Heat	JIS-C-5202 6.4 : 35±10°C for 3 ± 0.5 seconds	±(1%+0.05Ω)

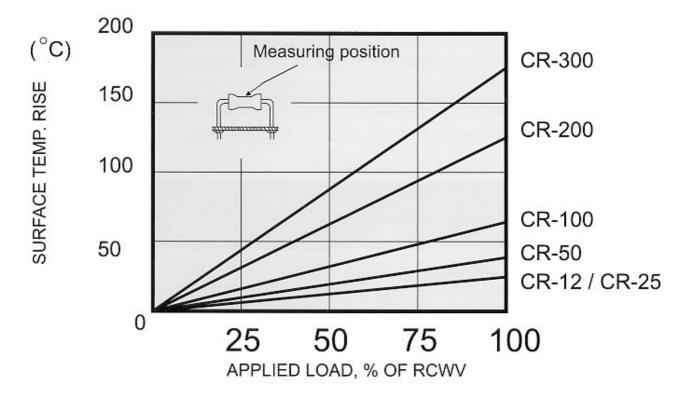

- \star Rated continuous Working Voltage (RCWV)= $\sqrt{\text{power rating x resistance value}}$

FIG.1 Derating Curve

FIG.2 Hot-Spot Temperature

